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ABSTRACT 

A sinusoidal surface profile is used to study by an exact method 

the effect of water waves on an electromagnetic field propagating downwards 

from the surface.     It is assumed that the magnetic field is directed parallel 

to the surface corrugations.     The results are presented graphically. 

Comparisons are made between these results and those obtained 

using an approximate method of Wait. 
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Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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Water-Wave Effects on Radio Wave Propagation in the Ocean 

I. METHOD OF SOLUTION 

The problem under consideration is the evaluation of the electro- 

magnetic field components under the ocean when the field sufficiently far 

above the ocean is essentially uniform and horizontal.     In a Cartesian 

coordinate system with its   z  axis pointing vertically,   the ocean surface 

is assumed to be given by the equation 

z + a cos Hx   =  0. (1) 

where   K = 2TT/L,  and   L  is the water wavelength.     The magnetic field   H 

far above the surface is assumed to lie in the y-direction,  and so the 

symmetry of the problem forces it to remain so everywhere.     Since,   in 

addition,   neither the far field nor the surface shape is a function of  y,    then 

no field quantity will depend on  y. 

Now the electromagnetic wavelengths of practical interest are very 

long compared with the water wavelength.    Therefore the quasi-static 

assumption that displacement currents are negligible can safely be made. 

Then in the (non-conducting) air,    H   satisfies the equation  V x H  =   0, 

V.  H  =   0.     But since   H   =  yH  (x, z),    then the only possible solution in the 

air is that  H    is a constant everywhere. 

2        2 In the ocean,    H   satisfies the quasi-static equation (V    + k  )H  =   0, 

where  k     =  iu)a|j.   .     (Time dependence is assumed to be as   expj-iiut},    O 

is the ocean conductivity and \i     is the permeability of free space).     Thus 

since the solution must also be periodic in x,    the general solution,   if it 

converges,   for   H     is 
* y 



H  (x, z)   =   ),   b   exp(-ik  z)cosnKx. (2) 
v "     n n n=o 

(The symmetry of the problem about the plane  x   =   0   excludes the 

possibility of additional terms in   sinnKx).     Here   k     is defined as n 

= yk2-nV    =    i/nV-k* k     = vk    - n  K       =    Un  K    - k (3) 
n 

and the negative sign in the exponent in (2) ensures that each mode decays 

exponentially as   z   goes negative. 

The corresponding expression for the electric field  E (x, z)   is given 

by   E = (VxH)/a   =   (-xSH  /öz + z ÖH  /Bx)/a,   or '     ~ ~ y y 

oo 

E   = —   ),   b   | x ik   cosnKx -  z, nH sin n K x iexp(-ik   z) (4) 
~       a   *->     n< n (      rv       n ' n=o 

Solving the problem involves finding the values of the unknown  b 

coefficients in (2) and (4) by means of the boundary condition that   H     is 
y 

continuous at the surface.     Thus,   assuming the uniform field above the 

surface is normalized to unity,   one can formally write,   using (1) and (2), 

00 

2^ b    exp-iik  a cosKxJcosnKx   =   1. (5) 
n=o 

By truncating the series on the left to   N  terms and enforcing the 

equality at  N  points in the range   0^ x <L  one can obtain  N   equations in 

the first  N  unknown  b     coefficients.     These equations can then be solved 

by the usual methods.     Unfortunately,   to obtain (5),   one must make the 

Rayleigh assumption,   which is that the downward-going wave expansion (2) 



is valid not only for   z<-a  but also in the strip   -a^z<a.       It can be shown 

[1,2]   that if the normalized wave height a/L is greater than 0. 713  then 

(2) is invalid there and (5) diverges.     Thus the   b     found by truncating the 

series in (5) to   N  terms will not in general converge to their correct values 

as   N is increased. 

However,   by interpreting (5) in a more general sense,   one can still 

use it as a basis for finding the  b     even though the series  diverges [3,4] . 

That is,   one regards the left side of (5) as a generalized function which 

can be equated to the actual field on the surface only indirectly via a complete 

set of sufficiently smooth test functions.     In this sense the downward going 

wave expansion will remain valid on the surface for a much larger range of 

a  than in the conventional point-by-point sense. 

Thus although (5) may be incorrect as it stands,   the result of multi- 

plying each side by   (X/2TT)COS m K x  and integrating with respect to x  over 

the range   0  to   2TT/K is the equation 

CO 

V A      b    =  6 (6) ^      mn  n mo n=o 

where   6 =   1   if  m   =   0  and is zero otherwise, and  A is mo mn 

2TT/R 
A = T— exp(i k  acosKx) cos n H x cos m H x dx mn       2rr d r       n o 

= {in+mJ   A    (ka)+in-mJ (k a)}/2. (7) ' n+m    n n-m    n    » 

Here the chosen test functions are the set (K/2TT) cos m Kx, (K/2TT) sin m Hx, 

of which only the former are necessary for representing the even function 

of x  which is   H  ,    and the series in (6) converges over a much larger range 



of  a  than does the series in (5).     In (7),    J   ,     (k a)   is the Bessel function 
n+m    n 

of the first kind  [5 1   of order  n+m  and argument  k  a. 6 n 

The evaluation of the   b     is now carried out in a straightforward way 

by truncating the series and solving the resulting finite set of equations. 

To obtain the actual field quantities in the ocean from the  b     is a 

simple matter in the region  z< - a   where the downward going wave expan- 

sion is known to converge.     One simply substitutes the numerical values of 

the   b     into (Z) for   H     and into (4) for   E.    However,   in the region -a<z<a, 
n y 

the series in (2) and (4) will not in general converge,   and so cannot be used 

directly. 

A general method which is applicable for evaluating the field quantities 

anywhere beneath the surface is to take that function of x  which is the field 

quantity along the line   z   =   z   (x)   =   -acosHx - d and expand it in the test 

function set.     In this case,   for   H     for example,   an even function of x,   the 
y 

expansion is 

OS 

H  (x, zd)   =  YJ   
c
n(d) cosnKx. (8) 

^ n=o 

But the generalized function for this same   H  (x, z,)   is given by (2) with   z 

replaced by   z ,(x).     Thus the   c   (d)   can be evaluated by multiplying the 

right sides of both (2) and (8) by   (K/2TT) cos m K x  and integrating from   0 

to  2TT/H.     The result is 

03 

c   (d)   =  e     T      A        exp(ik    d)b    , (9) 
n n <-> nm       r      m       m m=o 

where   e     =   1   if n   =   0  and is 2 otherwise,   and both the   b      and the  A 
n m nm 

[defined by (7) ]  are already known. 



Thus by using (8) and (9) one evaluates   H    on contours which are the 

same shape as the surface contour but at an arbitrary depth  d  below it. 

(When d   =  0 the contour lies at the surface,   on which  H     =   1.     Thus from 
y 

(8),   the  c   (0)  are given by  c   (0)   = 6        and so (9) reduces to (6),   the 

equation determining the   b   . ) 

Similarly,   by expressing  E  on the shifted surface-shaped contour as 

00 OD 

E=x   2J    
a   (d)cosnHx-z2j   s   (d)sinnKx 

n=o n=l 

one finds 

a   (d)   =  e    /,     A       exp(ik    d) ik    b    /o 
n n <->        nm m mm 

m=o 

and 

s   (d)   =   2 7,     B exp(ik    dlmxb    /c n u   ,    nm       r      m rrr »*.*. m m = l 

where   A is defined by (7) and 
nm 

_. r.n-mT n       .      .n+mT ..      . , /_. 
B^   =    i        J        (k a) - i        j k a) }/Z. 

mn n-m    n n+m    n 

It should be noted that although the method described above can be 

expected to converge numerically to the exact values for the coefficients 

b    ,   it will not in general be the case that   |b     |   goes to zero as  m  grows 

indefinitely, for the series in (2) does not in general converge when z = 0. 

Since (2) does converge for z^-a, however, one should find that the modi- 

fied coefficients   b     exp(ik    a)   do go to zero in absolute value as   m   grows 
m m 

indefinitely. 



II.      RESULTS 

Approximations of the   b       coefficients were obtained by inverting 
m 

the following truncated version of (6) 

N 
T   A       b    = 6       (m = 0, 1, . . . , N) (10) 
<-i      mn  n        mo 

n=o 

for various values of  N  and of the problem parameters   6/L  and  a/L. 

(K = ZTT/L and   k = (1 + i)/6,   where   6 = Jz/u> a\s     is the skin depth in the 

water. )   As a check on the accuracy of the inversion,   the   b     values found 
n 

from it were substituted back in the left side of (10) and the result compared 

with   6       .    As a check on the complete approximation,   the sum 
mo 

S = Tb   exp(ik a) 
Lj   xi n 

was computed using the approximate  b      and compared with the correct 

value,   given by (2) with  z = -a  and   x = 0,   of unity.    All computations were 

performed on the IBM 360 computer using  single precision. 

It was found that the method converged,   as   N  increased,   to give  stable 

values for the  b      when  a/L  was about 0. 3 or less.     The rapidity of the 
m ' 

convergence was greatest for the smaller values of a/L. The effect of 

ö/L on the convergence was less marked, but was in the direction that 

convergence was less rapid for the smaller   6/L values.    A typical result 

is that with   6/L = 1,   a/L = 0. 15  and  N = 9,    the value   of S-1 was found 
_3 

to be,   in absolute value,   less than 10 

When values of  a/L  larger than 0. 3 were used,   the convergence was 

slow and the   b       did not settle to stable values.     However,   the inversion 
m 

check showed that this behavior was always accompanied by poor inversion 

accuracy.     This indicates that the set of equations (10) becomes poorly 

conditioned when  a/L   exceeds 0. 3,   and then single precision is insufficient 

to solve them accurately. 



Some specific results for the underwater field components are given 

in Figs.   1 and 2.     In Fig.   1,   the horizontal field components  H    and   E 

in the plane  z = -a  are plotted as a function of x in magnitude and phase 

over a half-period (O^x^L/2)  for various values of  6/L.    The wave height 

parameter  a/L  is constant at 0. 15 (giving a maximum wave slope of about 

1) for all curves,   and the field quantities are normalized with respect to 

the fields that would exist at depth a  beneath a plane surface. 

The points plotted in Fig.   1 are the result of using Wait's  [6]  approx- 

imation to calculate the same field quantities.     This method assumes that 

for sufficiently shallow and long water waves,   the field propagates down to 

the level   z = -a   essentially as a plane wave.    Thus it would be expected to 

give good results for small   6/L and small  a/L.     The extent to which the 

approximation deteriorates when a/L is 0. 15 is indicated by the closeness 

of the points to the continuous lines.     (In Wait's approximation,   the   nor- 

malized quantities   H     and  E     are identical,   so that only one curve of 

points exists for amplitude and one for phase. ) 

At a sufficiently great depth,   only the first terms in the downward- 

going wave expansions (2) and (4) remain significant.     Under this condition, 

the ratio of the actual field to the field that would exist at the same depth 

beneath a plane surface is simply  b  /l   for both   H    and E   ,    since  b    =  1 
o y x o 

when  a/L = 0.     It was found that   |b   |   is always greater than or equal to 

unity,   and so the amplitude departure can be represented unambiguously 

by the quantity   |b    - 1 |.     The phase departure is just the phase of b   .     These 

quantities are plotted in Fig.   2 as a function of a/L  for various values of 

6/L. 

Since  b    also equals the ratio of the average horizontal field to the 

field at the same depth below a plane surface,   Fig.   2 also shows the way 

the average horizontal field components depend on a/L and   6/L  for any 

z < a. 



III.       CONCLUSIONS 

The mathematical technique described here (a generalized- 

function interpretation of the Rayleigh assumption) appears to be accurate 

and to converge rapidly for values of a/L  for which the conventional 

interpretation  of the Rayleigh assumption is known to be invalid.     Using 

this technique,   one can evaluate the electromagnetic field at any point 

beneath the surface for all water wave heights and lengths of practical 

interest. 
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Fig.   Z.     The amplitude and phase departures of the horizontal field at 
"great" depth (or of the average horizontal field at any depth z  <  -a) 
from those of the field at the same depth below a plane surface. 

10 



0.001 
0.05 

0/L 

Fig.   Z.    Continued. 

11 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification oi title,  body of abstract and indexing annotation must be entered when the overall report is classified) 

I.    ORIGINATING    ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.     REPORT   SECURITY    CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 

3.    REPORT   TITLE 

Water-Wave Effects on Radio Wave Propagation in the Ocean 

4.    DESCRIPTIVE   NOTES (Type of reporl and inclusive dates) 

Technical Note 

5.    AUTHOR(S)  (Last name, first name, initial) 

Burrows, Michael L. 

6.    REPORT   DATE 

2 January 1970 
7«.    TOTAL   NO.  OF   PAGES 

16 
7b. NO. OF REFS 

6 

8«. CONTRACT OR GRANT NO. 

AF 19(628)-5167 
b.    PROJECT   NO. 

1508A 

9a.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1970-1 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-70-1 

10.     AVAILABILITY/LIMITATION   NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

11.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Department of the Navy 

13.     ABSTRACT 

A sinusoidal surface profile is used to study by an exact method the effect of 
water waves on an electromagnetic field propagating downwards from the surface. 
It is assumed that the magnetic field is directed parallel to the surface corruga- 
tions.   The results are presented graphically. 

Comparisons are made between these results and those obtained using an 
approximate method of Wait. 

14.    KEY   WORDS 

water wave effects 
radio wave propagation 
electromagnetic fields 

Cartesian coordinate system 
Bessel functions 
Rayleigh theory 

M UNCLASSIFIED 
Security Classification 


